Di-Genic Inheritance in Genodermatoses: Insights from Two Consanguineous Cases in a Reference Lebanese Center within the Middle East and North Africa (MENA) Region
Keywords:
Digenic inheritance, Genodermatoses, Whole-exome sequencing, Microarray Gene Expression DataSetsAbstract
Introduction: Genodermatoses refer to a group of heterogenous rare genetic diseases with cutaneous expression. Several genodermatoses present with multisystem involvement that can range from mild to life-threatening conditions leading to increased morbidity and mortality.
Objective: Given the paucity in the literature in the field of genodermatoses especially in the Middle East and North Africa (MENA) region and building up on the first established genodermatoses database based in Lebanon, this article aimed to decipher the genetic basis of 2 different types of skin-inherited diseases (androgenic alopecia and vitiligo).
Methods: Herein, we propose the first di-genic model of inheritance which could be responsible for these 2 diseases, using Whole Exome Sequencing (WES) and GEO datasets.
Results: We identified 2 gene variants FOXC1(p.His484Tyr) and SMARCD1 (p.Arg351Cys) responsible for androgenic alopecia and HPS1(p.Ser566Ter) and ITK (p.Pro521Leu) responsible for vitiligo. Further analysis using GEO datasets, confirmed the connectivity between the genes involved in each each disease.
Conclusion: This study identified novel candidate disease genes and inheritance model that could explain the underlying phenotypes that could open the doors for a better-guided genomic approach for personalized treatment and early diagnosis.
References
Cheraghlou S, Lim Y, Choate KA. Mosaicism in genodermatoses. Clin Dermatol 2020;38:408-20.DOI: 10.1016/j.clindermatol.2020.03.008.
Ko CJ, Atzmony L, Lim Y, et al. Review of genodermatoses with characteristic histopathology and potential diagnostic delay. J Cutan Pathol 2019;46:756-65. DOI: 10.1111/cup.13520.
Itin PH, Burger B. [Genodermatoses for practitioners--principles and concepts]. Ther Umsch 2010;67:483-5. DOI: 10.1024/0040-5930/a000081.
Yu Y, Mi Z, Fu X, et al. Digenic inheritance of KRT5 and KRT14 mutations in a family with epidermolysis bullosa simplex. Australas J Dermatol 2020;61:e267-e9. DOI: 10.1111/ajd.13236.
Basit S, Wali A, Aziz A, Muhammad N, Jelani M, Ahmad W. Digenic inheritance of an autosomal recessive hypotrichosis in two consanguineous pedigrees. Clin Genet 2011;79:273-81. DOI: 10.1111/j.1399-0004.2010.01455.x.
Box NF, Duffy DL, Chen W, et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 2001;69:765-73. DOI: 10.1086/323412.PMCID: PMC1226062.
Almutairi A, Amin MM, Rashwan MAM, et al. Digenic inheritance of IL-36RA and SEC61A1 mutations underlies generalized pustular psoriasis with hypogammaglobulinemia. Clin Immunol 2022;235:108930. DOI: 10.1016/j.clim.2022.108930.
Bouhanna P. Multifactorial classification of male and female androgenetic alopecia. Dermatol Surg 2000;26:555-61. DOI: 10.1046/j.1524-4725.2000.00009.x.
Piraccini BM, Alessandrini A. Androgenetic alopecia. G Ital Dermatol Venereol 2014;149:15-24.
Ezzedine K, Silverberg N. A Practical Approach to the Diagnosis and Treatment of Vitiligo in Children. Pediatrics 2016;138. DOI: 10.1542/peds.2015-4126.
Yaghoobi R, Omidian M, Bagherani N. Vitiligo: a review of the published work. J Dermatol 2011;38:419-31. DOI: 10.1111/j.1346-8138.2010.01139.x.
Okamura K, Suzuki T. Current landscape of Oculocutaneous Albinism in Japan. Pigment Cell Melanoma Res 2021;34:190-203. DOI: 10.1111/pcmr.12927.
Kadhi A, Hamie L, Tamer C, Nemer G, Kurban M. A Novel Pathogenic CDH3 Variant underlying Heredity Hypotrichosis Simplex detected by Whole-Exome Sequencing (WES)-A Case Report. Cold Spring Harb Mol Case Stud 2022;8. DOI: 10.1101/mcs.a006225.PMCID: PMC9528967.
Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014;30:523-30. DOI: 10.1093/bioinformatics/btt703.PMCID: PMC3928520.
Li MM, Datto M, Duncavage EJ, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017;19:4-23. DOI: 10.1016/j.jmoldx.2016.10.002.PMCID: PMC5707196.
Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM, Seelow D. MutationTaster2021. Nucleic Acids Res 2021;49:W446-W51. DOI: 10.1093/nar/gkab266.PMCID: PMC8262698.
Gudmundsson S, Karczewski KJ, Francioli LC, et al. Addendum: The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2021;597:E3-E4. DOI: 10.1038/s41586-021-03758-y.PMCID: PMC8410591.
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-91. DOI: 10.1038/nature19057.PMCID: PMC5018207.
Genomes Project C, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature 2015;526:68-74. DOI: 10.1038/nature15393.PMCID: PMC4750478.
Gazzo A, Raimondi D, Daneels D, et al. Understanding mutational effects in digenic diseases. Nucleic Acids Res 2017;45:e140. DOI: 10.1093/nar/gkx557.PMCID: PMC5587785.
Gonzalez ME, Cantatore-Francis J, Orlow SJ. Androgenetic alopecia in the paediatric population: a retrospective review of 57 patients. Br J Dermatol 2010;163:378-85. DOI: 10.1111/j.1365-2133.2010.09777.x.
Vozza A, Piccolo V, Russo T, Vozza G. Familial androgenetic alopecia in siblings with normal endocrinological status. Pediatr Dermatol 2012;29:534-5. DOI: 10.1111/j.1525-1470.2011.01528.x.
Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: a review. Endocrine 2017;57:9-17. DOI: 10.1007/s12020-017-1280-y.
Randall VA. Androgens and hair growth. Dermatol Ther 2008;21:314-28. DOI: 10.1111/j.1529-8019.2008.00214.x.
Inui S, Itami S. Molecular basis of androgenetic alopecia: From androgen to paracrine mediators through dermal papilla. J Dermatol Sci 2011;61:1-6. DOI: 10.1016/j.jdermsci.2010.10.015.
Hillmer AM, Hanneken S, Ritzmann S, et al. Genetic variation in the human androgen receptor gene is the major determinant of common early-onset androgenetic alopecia. Am J Hum Genet 2005;77:140-8. DOI: 10.1086/431425.PMCID: PMC1226186.
Randall VA, Thornton MJ, Hamada K, Messenger AG. Mechanism of androgen action in cultured dermal papilla cells derived from human hair follicles with varying responses to androgens in vivo. J Invest Dermatol 1992;98:86S-91S. DOI: 10.1111/1523-1747.ep12462307.
Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev 2002;23:175-200. DOI: 10.1210/edrv.23.2.0460.
Hillmer AM, Brockschmidt FF, Hanneken S, et al. Susceptibility variants for male-pattern baldness on chromosome 20p11. Nat Genet 2008;40:1279-81. DOI: 10.1038/ng.228.
Bamodu OA, Tzou KY, Lin CD, et al. Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG and SRD5A1 Testosterone Tetrad Modulate Therapy Response and Susceptibility to Disease Relapse in Patients with Prostate Cancer. Cancers (Basel) 2021;13. DOI: 10.3390/cancers13143478.PMCID: PMC8303483.
Lewis MJ, Wiebe JP, Heathcote JG. Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. BMC Cancer 2004;4:27. DOI: 10.1186/1471-2407-4-27.PMCID: PMC459223.
van de Wijngaart DJ, Dubbink HJ, Molier M, de Vos C, Trapman J, Jenster G. Functional screening of FxxLF-like peptide motifs identifies SMARCD1/BAF60a as an androgen receptor cofactor that modulates TMPRSS2 expression. Mol Endocrinol 2009;23:1776-86. DOI: 10.1210/me.2008-0280.PMCID: PMC5419170.
Nixon KCJ, Rousseau J, Stone MH, et al. A Syndromic Neurodevelopmental Disorder Caused by Mutations in SMARCD1, a Core SWI/SNF Subunit Needed for Context-Dependent Neuronal Gene Regulation in Flies. Am J Hum Genet 2019;104:596-610. DOI: 10.1016/j.ajhg.2019.02.001.PMCID: PMC6451697.
Bin L, Deng L, Yang H, et al. Correction: Forkhead Box C1 Regulates Human Primary Keratinocyte Terminal Differentiation. PLoS One 2018;13:e0191127. DOI: 10.1371/journal.pone.0191127.PMCID: PMC5755917.
Lay K, Kume T, Fuchs E. FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci U S A 2016;113:E1506-15. DOI: 10.1073/pnas.1601569113.PMCID: PMC4801248.
Wang L, Siegenthaler JA, Dowell RD, Yi R. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 2016;351:613-7. DOI: 10.1126/science.aad5440.PMCID: PMC4828140.
Hariri H, Kurban M, Al-Haddad C, et al. Degenerated hair follicle cells and partial loss of sebaceous and eccrine glands in a familial case of axenfeld-rieger syndrome: An emerging role for the FOXC1/NFATC1 genetic axis. J Dermatol Sci 2018;92:237-44. DOI: 10.1016/j.jdermsci.2018.11.003.
Zhou LB, Cao Q, Ding Q, et al. Transcription factor FOXC1 positively regulates SFRP1 expression in androgenetic alopecia. Exp Cell Res 2021;404:112618. DOI: 10.1016/j.yexcr.2021.112618.
Kelberman D, Islam L, Holder SE, et al. Digenic inheritance of mutations in FOXC1 and PITX2 : correlating transcription factor function and Axenfeld-Rieger disease severity. Hum Mutat 2011;32:1144-52. DOI: 10.1002/humu.21550.
Xue H, Liu F, Ai Z, et al. FOXC1 Downregulates Nanog Expression by Recruiting HDAC2 to Its Promoter in F9 Cells Treated by Retinoic Acid. Int J Mol Sci 2021;22. DOI: 10.3390/ijms22052255.PMCID: PMC7956269.
Njoo MD, Westerhof W. Vitiligo. Pathogenesis and treatment. Am J Clin Dermatol 2001;2:167-81. DOI: 10.2165/00128071-200102030-00006.
Manga P, Kerr R, Ramsay M, Kromberg JG. Biology and genetics of oculocutaneous albinism and vitiligo - common pigmentation disorders in southern Africa. S Afr Med J 2013;103:984-8. DOI: 10.7196/samj.7046.
Jin Y, Andersen G, Yorgov D, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 2016;48:1418-24. DOI: 10.1038/ng.3680.PMCID: PMC5120758.
Wei AH, Zang DJ, Zhang Z, Yang XM, Li W. Prenatal genotyping of four common oculocutaneous albinism genes in 51 Chinese families. J Genet Genomics 2015;42:279-86. DOI: 10.1016/j.jgg.2015.05.001.
Sajid Z, Yousaf S, Waryah YM, et al. Genetic Causes of Oculocutaneous Albinism in Pakistani Population. Genes (Basel) 2021;12. DOI: 10.3390/genes12040492.PMCID: PMC8066997.
Marcon CR, Maia M. Albinism: epidemiology, genetics, cutaneous characterization, psychosocial factors. An Bras Dermatol 2019;94:503-20. DOI: 10.1016/j.abd.2019.09.023.PMCID: PMC6857599.
Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu Rev Genomics Hum Genet 2008;9:359-86. DOI: 10.1146/annurev.genom.9.081307.164303.PMCID: PMC2755194.
Xu C, Xiang Y, Li H, et al. Genetic analysis and prenatal diagnosis of 20 Chinese families with oculocutaneous albinism. J Clin Lab Anal 2021;35:e23647. DOI: 10.1002/jcla.23647.PMCID: PMC7891544.
Santiago Borrero PJ, Rodriguez-Perez Y, Renta JY, et al. Genetic testing for oculocutaneous albinism type 1 and 2 and Hermansky-Pudlak syndrome type 1 and 3 mutations in Puerto Rico. J Invest Dermatol 2006;126:85-90. DOI: 10.1038/sj.jid.5700034.PMCID: PMC3560388.
Loredana Asztalos M, Schafernak KT, Gray J, Berry A, Paller AS, Mancini AJ. Hermansky-Pudlak syndrome: Report of two patients with updated genetic classification and management recommendations. Pediatr Dermatol 2017;34:638-46. DOI: 10.1111/pde.13266.
Nguyen T, Wei ML. Hermansky-Pudlak HPS1/pale ear gene regulates epidermal and dermal melanocyte development. J Invest Dermatol 2007;127:421-8. DOI: 10.1038/sj.jid.5700566.
Richmond B, Huizing M, Knapp J, et al. Melanocytes derived from patients with Hermansky-Pudlak Syndrome types 1, 2, and 3 have distinct defects in cargo trafficking. J Invest Dermatol 2005;124:420-7. DOI: 10.1111/j.0022-202X.2004.23585.x.PMCID: PMC1635963.
Wei ML. Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function. Pigment Cell Res 2006;19:19-42. DOI: 10.1111/j.1600-0749.2005.00289.x.
Fain PR, Gowan K, LaBerge GS, et al. A genomewide screen for generalized vitiligo: confirmation of AIS1 on chromosome 1p31 and evidence for additional susceptibility loci. Am J Hum Genet 2003;72:1560-4. DOI: 10.1086/375451.PMCID: PMC1180316.
Czajkowski R, Mecinska-Jundzill K. Current aspects of vitiligo genetics. Postepy Dermatol Alergol 2014;31:247-55. DOI: 10.5114/pdia.2014.43497.PMCID: PMC4171675.
Martina JA, Moriyama K, Bonifacino JS. BLOC-3, a protein complex containing the Hermansky-Pudlak syndrome gene products HPS1 and HPS4. J Biol Chem 2003;278:29376-84. DOI: 10.1074/jbc.M301294200.
Hu J, Sahu N, Walsh E, August A. Memory phenotype CD8+ T cells with innate function selectively develop in the absence of active Itk. Eur J Immunol 2007;37:2892-9. DOI: 10.1002/eji.200737311.PMCID: PMC2770953.
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020;98:1385-95. DOI: 10.1007/s00109-020-01958-z.PMCID: PMC7524833.
Litvinov IV, Netchiporouk E, Cordeiro B, et al. The Use of Transcriptional Profiling to Improve Personalized Diagnosis and Management of Cutaneous T-cell Lymphoma (CTCL). Clin Cancer Res 2015;21:2820-9. DOI: 10.1158/1078-0432.CCR-14-3322.PMCID: PMC4470792.
Gomez-Rodriguez J, Meylan F, Handon R, et al. Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun 2016;7:10857. DOI: 10.1038/ncomms10857.PMCID: PMC4782063.
Graves PE, Siroux V, Guerra S, Klimecki WT, Martinez FD. Association of atopy and eczema with polymorphisms in T-cell immunoglobulin domain and mucin domain-IL-2-inducible T-cell kinase gene cluster in chromosome 5 q 33. J Allergy Clin Immunol 2005;116:650-6. DOI: 10.1016/j.jaci.2005.05.004.
Linka RM, Risse SL, Bienemann K, et al. Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012;26:963-71. DOI: 10.1038/leu.2011.371.
Wallace JG, Alosaimi MF, Khayat CD, et al. ITK deficiency presenting as autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 2021;147:743-5 e1. DOI: 10.1016/j.jaci.2020.06.019.PMCID: PMC7779661.
Sushama S, Dixit N, Gautam RK, Arora P, Khurana A, Anubhuti A. Cytokine profile (IL-2, IL-6, IL-17, IL-22, and TNF-alpha) in vitiligo-New insight into pathogenesis of disease. J Cosmet Dermatol 2019;18:337-41. DOI: 10.1111/jocd.12517.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ayat Kadhi, Lamiaa Hamie, Edward Eid, Georges Nemer, Mazen Kurban

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Dermatology Practical & Conceptual applies a Creative Commons Attribution License (CCAL) to all works we publish (http://creativecommons.org/licenses/by-nc/4.0/). Authors retain the copyright for their published work.